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Abstract— Conventional traffic optimization solutions expect that the graph structure of street systems is static and missing 

for further traffic flow optimization. We are interested in optimizing traffic flows as a latest type of graph-based issue, where 

the graph structure of a street network can adjust to traffic conditions in real time. Specifically, we focus on the dynamic 

setup of traffic-lane directions, which can offer assistance in adjusting the utilization of traffic paths in opposite directions. 

The rise of connected autonomous vehicles offers an opportunity to apply this kind of dynamic traffic optimization on a 

huge scale. The existing procedures for optimizing lane directions are however not appropriate for dynamic traffic situations 

due to their high computational complexity and the static nature. 

In this paper, we propose an effective traffic optimization solution, called Coordinated Learning-based Lane Allocation 

(CLLA), which is appropriate for dynamic setup of path directions. CLLA comprises of a two-layer multi-agent 

architecture, where the bottom-layer agents use a machine learning technique to discover a appropriate arrangement of 

lane-directions around street crossing points. The lane-direction changes proposed by the learning agents are at that point 

coordinated at the next level to diminish the negative impact of the changes on other parts of the street network. Our test 

results show that CLLA can decrease the average travel time significantly in congested street networks. We accept our 

method is common enough to be applied on other types of networks as well. 

 Keywords—Graphs, CLLA, Reinforcement Learning 

INTRODUCTION  

The objective of traffic optimization is to improve traffic flows in street networks. Conventional solutions ordinarily assume that 

the structure of street networks is static regardless of how traffic can change at real time. A less-common way to optimize traffic is 

by performing limited changes to street networks which when is-use are sent in very little scale. We focus on dynamic lane-direction 

changes, which can offer assistance in adjusting the utilization of traffic paths in numerous circumstances, e.g., as soon as when the 

traffic paths in one direction become congested whereas the traffic paths in the opposite direction are underused. Unfortunately, the 

existing procedures for optimizing path- directions are not appropriate for dynamic traffic environment on huge scale due to their 

high computational complexity. We create an effective solution for optimizing lane-directions in highly dynamic traffic situations. 

Our solution is based on an algorithm that alters the property of a street network graph for improving traffic flow within the 

corresponding street network, introducing a new graph issue. 
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(a)Traffic before path- direction change 

(b )Traffic after path- direction change 

The impact of dynamic lane-direction configurations can be shown in the following example, where vehicles are moving north-

bound and 1 vehicle are moving south-bound (Figure 1) at a certain time. In Figure 1a, there are 4 north-bound lanes and 4 south-

bound lanes. Due to the large number of vehicles and the limited number of lanes, the north-bound traffic is highly congested. At 

the same time, the south-bound vehicles are moving at a high speed as the south-bound lanes are almost empty. Figure 1b shows 

the dramatic change of traffic flow after lane-direction changes are applied when congestion is observed, where the direction of E, 

F and G is reversed. The north-bound vehicles are distributed into the additional lanes, resulting in a higher average speed of the 

vehicles. At the same time, the number of south-bound lanes is reduced to 1. Due to the low number of south-bound vehicles, the 

average speed of south-bound traffic is not affected. The lane-direction change helps improve the overall traffic efficiency in this 

case. This observation was used by traffic engineers of certain street sections for many years and applied in a more static way. We 

aim to scale this to extreme levels in time and space. The advantage of dynamic lane-direction changes can also be observed in 

preliminary tests, where we compare the average travel time of vehicles in two scenarios, one uses dynamic lane-direction 

configurations, another uses inactive lane direction configurations. The dynamic lane-direction configurations are computed with a 

direct solution. The result shows that lane-direction changes diminish travel times 

Figure 2: The average travel time of vehicles when using static and dynamic path-direction configurations. 

by 14% on average when the traffic increases (see Figure 2). In traffic engineering terms usually, there is a dramatic reduction. In 

spite of their potential advantage, dynamic lane direction changes cannot be viably applied to existing traffic systems as they require 

additional signage and security features. However, the rise of connected autonomous vehicles (CAVs) can make dynamic lane-

direction changes a common practice in the future. Our past work shows that CAVs have the potential to enable inventive traffic 

management solutions. Compared to human-driven vehicles, CAVs are more capable of reacting to a given command in a timely 

manner. CAVs can moreover give point by point traffic telemetry data to a central traffic management system in real time. This 

helps the system to adjust in dynamic traffic conditions. 

We formulate path allocation based on real-time traffic as a modern graph issue with the aim to discover a new graph from a street 

network (i.e., dynamically optimize the graph) such that total travel time of all vehicles in the street network is minimized. In order 

to optimize the flow of the entire network, all the traffic paths within the network must be considered. In numerous circumstances, 

one cannot simply allocate more traffic lanes at a road segment for a particular direction when there's more traffic request in the 

direction. This is because a lane-direction change at a street section can affect not only the flow in both directions at the street 

segment but also the flow at other street sections. Due to the complexity of the issue, the computation time can be very high with 
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the existing approaches as they aim to discover the optimal configurations based on linear programming, and thus are not appropriate 

for frequent precomputation over huge networks. 

To address the above-mentioned issues, we propose a light-weight and efficient system, called a Coordinated Learning-based Lane 

Allocation (CLLA) framework, for optimizing lane-directions in dynamic traffic situations. The CLLA approach finds the 

configurations that efficiently improve the traffic efficiency of the entire network, while keeping the computation cost of the solution 

low. The key point is that traffic optimization can be decoupled into two forms: i) a local process that proposes lane-direction 

changes based on local traffic conditions around street intersections, and b) a global process that evaluates the proposed lane-

direction changes based on their large-scale impact. 

 

Figure 3: The hierarchical architecture of our traffic management solution based on path-direction changes. 

The architecture of our hierarchical solution is outlined in Figure 3. The bottom layer comprises of a set of autonomous agents that 

operate at the intersection level. An agent finds appropriate lane-direction changes for the street sections that connect to a particular 

intersection. The agent uses reinforcement learning, which helps decide the best changes based on numerous dynamic components. 

The agents send the proposed lane direction changes to the upper layer, which comprises of a coordinating agent. The coordinating 

agent maintains a data structure, named Path Dependency Graph (PDG), which is built based on the trip information of connected 

autonomous vehicles. With the help of the data structure, the coordinating agent evaluates the global impact of the proposed path 

direction changes and chooses what changes ought to be made to the traffic lanes. The decision is sent back to the bottom layer 

agents, which will make the changes accordingly. The main contributions of our work are as follows: 

 We formulate dynamic path allocation as a new graph issue (Dynamic Resource Allocation problem).  

 We propose a hierarchical multi-agent solution (called CLLA) for efficient dynamic optimization of path- directions that 

uses reinforcement learning to capture dynamic changes in the traffic.  

 We introduce an algorithm and innovative data structure (called path dependency graph) for coordinating path- direction 

changes at the global level.  

 Extensive experimental assessments shows that CLLA significantly beats other traffic management solutions, making it a 

practical tool for moderating traffic congestion for future traffic networks. 

RELATED WORK 

A. Traffic Optimization Algorithms Existing traffic optimization algorithms are commonly based on traffic flow optimization with 

linear programming. The algorithms are appropriate for the circumstances where traffic request and congestion levels are 

moderately static. When there's a significant change within the network, the optimal solutions normally ought to be re-computed 

from scratch. Due to the high computational complexity of finding an optimal solution, the algorithms may not be appropriate for 

highly dynamic traffic environments. With the rise of reinforcement learning, a new generation of traffic optimization algorithms 

have risen. In reinforcement learning, a learning agent can discover the rules to achieve an objective by repeatedly interacting with 

an environment. The interactive process can be displayed as a finite Markov Choice Prepare, which needs a set of states S and a set 

of actions A per state. Given a state s of the environment, the agent takes an action a. As the result of the action, the environment 

state may change to sJ with a reward r. The agent then decides the next action in order to maximize the reward in the next round. 

Reinforcement learning-based approaches can recommend the best actions for traffic optimization given a combination of network 

states, such as the queue size at intersections. They have an advantage over linear programming-based approaches, since in case 

trained well, they can optimize traffic in a highly dynamic network. In other words, there's no need to re-train the agent when there's 

a change in the network. Different to the existing approaches, our solution uses reinforcement learning for optimizing lane-

directions. A common issue with reinforcement learning is that the state space can grow exponentially when the dimensionality of 

the state space grows linearly. For example, let us assume that the initial state space has only one dimension, the queue size at 

intersections. In case we add two dimensions to the state space, traffic signal stage and traffic path configuration, there will be three 

dimensions and the state space is four times as large as the original state space. The fast growth of the state space can make 

reinforcement learning unacceptable for real deployments. This issue is known as the curse of dimensionality. A common way to 
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mitigate the issue is by using a function approximator such as a neural organize. Such methods have been mainly used for dynamic 

traffic signal control, while we expand the use of the method to dynamic path- direction configuration. 

B. Numerous existing traffic optimization solutions use model- based reinforcement learning, where one must know the exact 

probability that a particular state travels to another particular state as a result of a particular action. Nonetheless, such an assumption 

is unrealistic since the complete knowledge of state transition probabilities can barely be known for highly complex traffic systems. 

Different to model-based approaches, our optimization solution utilizes a model-free algorithm, Q- learning, which does not require 

such knowledge and thus is much more appropriate to real traffic systems. Coordination of multi-agent reinforcement learning can 

be accomplished through a joint state space or through a coordination graph. Such procedures however require agents to be trained 

on the targeted network. Since our approach uses an implicit mechanism to coordinate, once an agent is trained, it can be used in 

any street network. Lane-direction Configurations 

Research shows that dynamic lane-direction changes can be an effective way to improve traffic efficiency [3]. However, existing 

approaches for optimizing lane-directions are based on linear programming [5]–[7], [27], which are unsuitable for dynamic traffic 

situations contributes to their high computational complexity. Their experiments show that the total travel time can be decreased. 

In any case, the computational time grows exponentially when the number of vehicles grows linearly, which can make the approach 

unsuitable for highly dynamic traffic situations. Other approaches perform optimization based on two processes that interact with 

each other. One process is for minimizing the entire system cost by reversing path directions while the other process is for making 

route decisions for individual vehicles such that all the vehicles can minimize their travel times. To discover a great optimization 

solution, the two processes ought to be interact with each other iteratively. The high computational cost of the approaches can make 

them unsuitable for dynamic traffic optimizations. Moreover, all these approaches assume exact knowledge of traffic request over 

the time horizon is known previously; this assumption does not hold when traffic request is stochastic. On the contrary, CLLA is 

lightweight and can adjust to highly dynamic circumstances based on reinforcement learning. The learning agents can discover the 

viable lane-direction changes for individual street intersections even when traffic request changes dramatically. 

C. Traffic Management with Connected Autonomous Vehicles  

Some recent development of traffic management solutions is custom fitted for the period of connected autonomous vehicles. We 

have created a traffic management model that combines connected autonomous vehicles and intelligent street framework for 

improving traffic flow . We have created an approach to improve traffic efficiency at intersection using connected autonomous 

vehicles. We use the CAVs as an opportunity for path optimization. 

 

PROBLEM DEFINITION  

In this section, we formalize the issue of traffic optimization based on dynamic configuration of path directions. Our issue is similar 

to Network Design Problem, however NDP is based on the assumption of knowledge of traffic request for entire time horizon at 

time zero and the output network is designed for a common state. We attempt to configure a graph (street network) at regular time 

intervals based on real-time traffic, hence we name this issue, Dynamic Graph Resource Allocation problem. Let tt(V, E) be a street 

network graph, where V is a set of vertices and E is a set of edges. Let us assume that edge e E connects between vertex x V and 

vertex y V . The edge has three properties. The first property is that the total number of paths, ne, which is a constant number. The 

second property is the number of paths that begin from x and end in y, ne1 . The third property is the number of paths in the opposite 

direction (from y to x), ne2 . ne1 and ne2 can change but they are always subject to the following constraint. ne1 + ne2 = ne (1) We 

assume that a CAV follows a pre-determined path based on an origin-destination (O-D) pair. Let the number of unique O-D pairs 

of the existing vehicles be k at a given time t. For the ith (i <= k) O-D pair, let di,t be the traffic request at time t, i.e., the number 

of vehicles with the same O-D pair at that time. The traffic request can be stochastic. Let the travel time of vehicle j with the ith O-

D pair be TTi,j, which is the duration for the vehicle to move from the origin to destination. For a given time t, the average travel 

time of all the vehicles, which will reach their goal during a time period T after t, can be defined as  

ATT<t,t+T > = 
Σ Σ 

TTi,j/ 
Σ 

mi 

              i=1 j=1         i=1 

 

where mi is the number of vehicles with the ith O-D pair that will complete their trips between t and t + T . 

 We   define   and   solve   a   form   of   the   issue   where at  frequent  regular  intervals,  we  optimize  travel  time,  while changing  the  

path  arrangement  in  all  edges.  We discover a  new graph ttJ
t(V, EJ) at a given time t from previous tt at previous time  step.  Let eJ

1, 

eJ
2      E

J and  eJ
1  connects  from  vertex  x  to vertex  y  and  eJ

2  connects  vertex  y  to  vertex  x.  We discover for all edges the values of 

net     and net, such that the average travel time AT T<t,t+T > is minimized. We call this Dynamic Resource Allocation problem. 
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DEMAND-BASED LANE ALLOCATION (DLA)  

When considering dynamic lane-direction   changes, a straightforward solution can use a centralized approach to optimize lane-

directions based on the full knowledge of traffic demand, i.e., the number of vehicle paths that pass through the street links. We call 

this solution Demand-based Lane Allocation (DLA). Algorithm 1 shows the implementation (in pseudo code) of such idea to 

compute the configuration     of lane-directions. DLA allocates more paths for a particular direction when the average traffic request 

per path in the direction is higher than the average traffic request per path   in the opposite direction. To specify the directions, we 

define two terms, upstream and downstream. The terms are defined as follows. Let us assume that all the vertices of the street 

network graph are ordered by the identification number of the vertices. Given two vertices, v1 and v2, and a direction that points 

from v1 to v2, we say that the direction is upstream if v1 is lower than v2 or downstream if v1 is higher than v2.  

DLA first computes the traffic demand at the edges that are on the path of the vehicles. The traffic request is computed for the 

upstream direction (upe) and the downstream direction (downe) separately. Then it evaluates the difference of the average traffic 

request per path between the two directions (Line 9-11). Based on the difference between the two directions, DLA decides whether 

the number of paths in a specific direction should be increased. We should note that increasing the number of paths in one direction 

suggests that the number of paths in the opposite direction is decreased. DLA only decreases the number of paths in a direction in 

case the traffic request in that direction is lower than a threshold. The complexity of the algorithm is (k E ), where E is the number 

of edges in tt and k is the number of O-D pairs. While it is clear to implement and is efficient, there are two notable disadvantages 

of DLA. First, the algorithm does not consider real-time traffic conditions, such as the queue length at a given time, during 

optimization; the only data used for optimization is (assumed apriori known) traffic request and exact knowledge of traffic request 

is troublesome to obtain in dynamic street networks. This can make the lane-direction configuration less adaptive (and less 

applicable) to real-time traffic conditions.  Second, the lane-direction optimization for individual road segments is performed 

individually, not considering the potential impact of a lane-direction change at a road section on other street sections in the same 

street network. Hence, a lane-direction change that helps improve traffic efficiency at a street link may lead to the decrease of traffic 

efficiency in other parts of the street network. 

 

COORDINATED LEARNING-BASED LANE ALLOCATION (CLLA) 

To handle the issues of the direct solution, we propose a fundamentally different solution, a Coordinated Learning-based Lane 

Allocation (CLLA) framework. CLLA uses a machine learning procedure to assist optimize path- direction configurations, which 

permits the framework to adjust to a high variety of real-time traffic conditions. In addition, CLLA coordinates the lane-direction 

changes by considering the effect of a potential lane-direction change on different parts of the street network. DLA, on the other 

hand, does not consider the global impact of lane-direction changes. Another difference between the two is that DLA requires the 

full path of vehicles to be known for computing traffic request. CLLA only needs to know partial data almost vehicle paths in 

addition to certain data around real-time traffic conditions, such as intersection queue lengths and path configuration street sections 

which can be obtained from inductive-loop traffic detectors. CLLA uses a two-layer multi-agent architecture. The bottom layer 

comprises of learning agents that are responsible for optimizing the direction of paths connected to particular intersections. Using 

the multi-agent approach can significantly boost the speed of learning. The lane-direction changes that are chosen by the learning 

agents are aggregated and evaluated by a planning agent at the upper layer, which will send the globally optimized lane-direction 

configuration to the bottom layer for making the changes.  A more detailed overview of CLLA is shown in Figure 4. As the figure 

shows, an agent in the bottom layer only observes the nearby traffic condition around a particular intersection. Agents make 

decisions on lane-direction changes independently. 
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Figure 4: An iutline of the CLLA’s architecture 

Whenever an agent makes a path- direction change, it sends the proposed change to the coordinating agent in the upper layer. The 

agents moreover send certain traffic data to the upper layer periodically. The data can offer assistance indicating whether there's an 

imbalance between upstream traffic and downstream traffic at particular street sections. The coordinating agent evaluates whether 

a change would be beneficial at the global level. The evaluation process includes a novel data structure, Path Dependency Graph 

(PDG), to inform decisions sent from the foot layer. The coordinator may permit or deny a lane-direction change request from the 

bottom-layer. It may moreover decide to make further changes to lane-directions in addition to the requested changes. After 

evaluation, the coordinating agent informs the bottom-layer agents about the changes to be made. 

We should note that the coordinator doesn't need to evaluate a lane-direction change request as soon as it arrives. As shown in 

Figure 5, the coordinator evaluates the path direction changes periodically. The time interval between the evaluations is T . All the 

requests from the bottom-layer agents are buffered during the interval. The exact value of the interval must be balanced case by 

case. A short interval may increase the computational cost of the solution. A long interval may decrease the viability of the 

optimization. 

http://www.ijcrt.org/


www.ijcrt.org                                                                © 2021 IJCRT | Volume 9, Issue 3 March 2021 | ISSN: 2320-2882 

IJCRT2103039 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 287 
 

 
Figure 5: The CLLA’s inter-communication timeline between 

A. CLLA Algorithm  

Algorithm 2 shows the entire optimization process of CLLA. During one iteration of the algorithm, each learning agent finds the 

lane-direction changes around a specific street intersection using the process described in Section V-B. The proposed change is 

stored as an edge-change pair, which is buffered in the system. When it is time to evaluate the proposed changes, the system uses 

the Direction-Change Evaluation algorithm (Section V-C) to quantify the conflicts Evaluation algorithm (Section V-C) to quantify 

the conflicts between the proposed changes. For example, when a learning agent proposes to increase the number of upstream paths 

on street section s1 whereas another agent proposes a lane direction change on a different street section s2, which can lead to the 

increase of the downstream traffic flow on s1, there is a conflict between the proposed changes for s1. The Change Evaluation 

algorithm also expands the set of the proposed changes that may be beneficial. Upon returning from the Change Evaluation 

algorithm, CLLA checks the expanded set of edge-change pairs. For each edge-change pair, if the number of conflicts for the edge 

are below a given limit, the change is applied to the edge (Line 12).  

B. Learning-based Lane-direction Configuration 

 In the CLLA framework, the bottom-layer agents use the Qlearning technique to find appropriate lane-direction changes based on 

real-time traffic conditions. Q-learning aims to discover a approach that maps a state to an action. The algorithm depends on an 

action value function, Q(s, a), which computes the quality of a state-action combination. In Qlearning, an agent tries to discover the 

optimal approach that leads to the maximum action value. Q-learning updates the action value function using an iterative process 

as shown in Equation 3. 
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Qnew(s,a)=(1−α)Qt(s,a)+α(rt+1+maxQ(st+1,a)) 

where s is the current state, a is a specific action, st+1 is the next state as a result of the action, maxQ(st+1, a) is the a estimated 

optimal action value in the next state, value rt+1 is an observed reward at the next state, α is a learning rate and γ is a discount 

factor. In CLLA, the states, actions and rewards used by the learning agents are defined as follows.  

1) States: A learning agent can work with four types of states. The first state represents the current traffic signal stage at an 

intersection. The second state represents the queue length of incoming vehicles that are going to pass the intersection without 

turning. The third state represents the queue length of incoming vehicles which are going to turn at the intersection. The fourth state 

represents the queue length of outgoing vehicles, i.e., the vehicles that have passed the intersection. 

Although it is possible to add other types of states, we discover that the combination of the four states can work well for traffic 

optimization.  

2) Actions: There are three possible actions: increasing the number of upstream paths by 1, increasing the number of downstream 

paths by 1 or keeping the current configuration. When the number of paths in one direction is increased, the number of paths in the 

opposite direction is decreased at the same time. Since a learning agent controls a particular street intersection, the agent determines 

the action for each individual street section that connects with the crossing point. An agent is permitted to take a lane-changing 

action only when there's a traffic imbalance on the street section (see Equation 4 for the definition of traffic imbalance).  

3) Rewards: We define the rewards based on two components. The first component is the waiting time of vehicles at an intersection. 

When the waiting time decreases, there's generally an improvement of traffic efficiency. Thus, the rewards should consider the 

difference between the current waiting time and the updated waiting time of all the vehicles that are approaching the intersection. 

The second component is the difference between the length of vehicle queues at different approaches to an intersection. When the 

queue length of one approaching street is significantly longer than the queue length of another approaching street, there's a higher 

chance that the activity becomes congested in the previous case. Hence, we have to be penalized the actions that increase the 

difference between the longest queue length and the shortest line length. The following reward function combines the two variables. 

A parameter β is used to provide weights for the two components. We normalized the two components to stabilize the learning. 

R = (1 -β) X Current wait time − Next wait time 

                     max(Next wait time, Current wait time) 

 Queue length difference  
                −β × Aggregated road capacity 

C. Coordination of Lane-direction Changes  

We create the coordinating process based on the observation that a locally optimized lane-direction change may conflict with the 

lane-direction changes that happen in the surrounding regions. A conflict can happen due to the fact that the impact of a lane-

direction change can spread from one street section to other street section. For example, let us assume that a constant section of the 

upstream traffic that passes through street section x will also pass-through street section y in the upstream direction afterward. An 

increase of the upstream paths on x can lead to a significant increase of upstream traffic on x due to the increased traffic capacity 

in the direction. Over time, the traffic volume change on x can lead to the increase of the upstream traffic on y, which implies that 

the number of upstream paths at y may need to be increased to suit the change of traffic volume. In this case, the lane direction 

change at y can be seen as a considerable change caused by the change at x. However, the learning agent that controls the lane 

directions at y may recommend an increase of downstream paths based on the current nearby traffic condition at y. If this is the 

case, the locally optimized change will conflict with the considerable change. The key task of the coordinating process is evaluating 

such conflicts in street networks. If there are a large number of conflicts at a street sections, the locally optimized change should 

not be applied since it may have a negative impact on the traffic flows at the global level later on. This is a key point behind the 

coordination process of our solution. As shown in Section V-A, our solution applies a proposed lane-direction change to a street 
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section only when the number of the conflicts is below a given threshold. 

 

To help identify the conflicts between lane-direction changes, we create a novel data structure, named Path Dependency Graph 

(PDG). The data structure maintains various types of traffic data, including the path of traffic flow, the proposed lane-direction 

changes and the current traffic conditions. The coordinating agent uses PDG to search for the locations of consequential lane-

direction changes. The conflicts between lane-direction changes are then identified by comparing the consequential lane-direction 

changes and the proposed lane-direction changes at the same locations. The coordinating agent also proposes additional lane-

direction changes using PDG. 

 

A PDG (PDtt(V P DG, EP DG)) comprises of a number of vertices and a number of directional edges. A vertex v V P DG represents 

a street section. The corresponding street sections of the two vertices must appear in the way of a vehicle. A vertex can connect to 

a number of outdegree edges and a number of in-degree edges. The direction of an edge depends on the order of traffic stream that 

goes through the two street sections. An edge that begins from vertex v1 and ends in vertex v2 shows that the traffic flow will pass 

through v1’s corresponding street section first then pass through v2’s corresponding street section afterward. We should also note 

that the two street sections, which are linked by an edge, don't need to share a common street intersection, i.e., they can be disjoint. 

Given the path of all the vehicles, a PDG can be built such that all the unique street sections on the vehicle paths have corresponding 

vertices in the graph. For each pair of the street sections on a vehicle path, there is a corresponding edge in the graph. If the path of 

two or more vehicles goes through the same pair of street se, there is only one corresponding edge in the graph.  

A vertex of PDG has the following properties. 

 Proposed Change: The proposed lane-direction change at the corresponding road segment. This may be submitted from 

a learning agent or created by the system during the coordinating process. The property value can be 1, 0 and −1. A value 

of 1 means the upstream direction gets one more lane. A value of 0 means there is no need for a change. A value of −1 

means the downstream direction gets one more lane. Consequential Changes: A list of potential lane direction changes 

caused by lane-direction changes at other street sections. Similar to the Proposed Change property, the value of a 

considerable change can be 1, 0 and −1.  

Imbalance: The path direction which has a considerably higher traffic load than the other direction. The property value 

can be upstream, downstream and none. In our implementation, the imbalance of traffic load is measured based on the 

queue length in the opposite directions. Let qup be the upstream queue length and qdown be the downstream queue length. 

Let the total queue length in both directions be qtotal. Let P be a threshold percentage. The property value is computed as 

follows. 

  

  upstream,            if qup /qtotal > P 

Imbalance = downstream, if qdown/qtotal > P 

   0 ,           otherwise 

Due to the dynamic nature of traffic, imbalance value may change frequently, leading to frequent changes of lane directions. This 

may not be ideal in practice. One can get a steady imbalance value by adding certain restrictions in the computation. For example, 

one may require that the ratio between upstream queue length and the total queue length must be above the threshold for a certain 

period of time before setting the imbalance value to upstream.  

Current Lane Configuration: The number of upstream lanes and the number of downstream lanes in the corresponding road 

segment.  

 

An edge of PDG incorporates a property called impact, which shows whether a lane-direction change at the beginning vertex can 

lead to the same change at  

the ending vertex. The value of this property can be -1 or 1. A value of 1 implies the change at both vertices will be the same. For 

example, in case the change at the beginning vertex is increasing the number of upstream paths, the change at the ending vertex will 

also be increasing the number of upstream paths. A value of -1 implies the changes at the vertices will be opposite to each other. 

The relationship between the changes and the property value is shown in Equation 5, where the beginning vertex is v1 and the 

ending vertex is v2. The property value is decided based on the way of the majority of the vehicles that move between the two 

corresponding street sections. If the path passes through both street sections in the same direction, the property value is 1. Otherwise, 

the property value is -1. The impact property is key for finding the consequential change at the ending vertex given the change at 

the beginning vertex. As shown in Equation 6, the considerable change at the ending vertex can be computed based on the property 

value and the initial change at the beginning vertex.  

 

 impact(v1 ,v2 ) =changev1 × changev2          (5) 

changev2 = impact(v1,v2) × changev1            (6) 

 

When constructing a PDG, it may not be necessary to consider the full path of vehicles due to two reasons. First, the full path of 

vehicles can consist of a large number of road segments. 

 The size of the graph can grow exponentially when the length of path increases. Second, due to the highly dynamic 

nature of traffic, the coordination of lane-direction changes should only consider the traffic conditions in the future. Therefore, in 

our implementation, we set an upper limit to the number of street sections in vehicle paths when building a PDG. The limit is called 

lookup distance in our experiments.  

 We show an example road network (Figure 6a) and its corresponding PDG (Figure 6b). The road network has 12 

roads segments (A to L). There are two paths going through the network, path α and path β. Path α passes through 4 edges (A, B, 

D, F). Path β passes through 5 edges (A, C, E, D and F). The 7 edges correspond to 6 vertices in the PDG. The PDG contains 2 

edges starting from A (A-B, A-C) because path α passes through A, C, E, D and F in the road network. Similarly, the PDG contains 

2 edges that starting from A.  

 For each edge in the PDG, the value of its impact property is attached to the edge. As path α goes through the edges 
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(A, B, D and F) in the upstream direction (Figure 6a), the impact value at all the edges between the corresponding vertices is 1 in 

the PDG (Figure 6b). This is because path β goes through C in the upstream direction but it goes through D in the downstream 

direction. 

The coordinator uses the Direction-Change Assessment algorithm (Algorithm 3) to evaluate the conflicts between path- direction 

changes. The algorithm traverses through a PDG in a breadth-first manner in iterations. The number of iterations is controlled by a 

depth parameter (shown as dp in Algorithm 3). In the first round of iteration, the algorithm begins with the lane-direction changes 

that are proposed by the bottom-layer learning agents. For each vertex with a proposed change, its first-depth  

 

 

 

 
(a) A simple street network with two paths (red and green) 

 

 
(b) Path dependency graph 

 

 

neighbours (out-degree nodes) are visited (Step 6). 

For each of the neighbours, the considerable change caused by the proposed change is computed. This could be done with the 

method shown in Equation 6. At that point the algorithm updates the count of conflicts at the neighbour’s corresponding street 

network edge. In another cycle, the algorithm begins with all the neighbour vertices that are visited in the previous round. After 

each iteration dp is decremented. The algorithm stops when dp reaches zero.  

The Direction-Change Evaluation algorithm not only quantifies the conflicts between lane-direction changes but also expands the 

set of lane-direction changes for the street sections that are visited during the traversal of the PDG. The basis is that the bottom-

layer learning agents may not propose path- direction changes for street sections when they don't predict any advantage of the 

change based on nearby traffic conditions. In any case, the lane-direction changes in other parts of the street network may eventually 

affect the traffic conditions at these street sections, leading to traffic congestions. The algorithm pre-emptively endeavours lane-

direction changes for these street sections when it predicts that there can be considerable changes caused by the changes in other 

parts of the street network. This will offer assistance in moderating incoming traffic congestions. As shown in Step 6 of Algorithm 

3, a Direction-Change Creation algorithm is used for proposing additional lane-direction changes. Details of the Direction-Change 

Creation algorithm are shown in Algorithm. 

Complexity of Coordinating Process. Let us assume there are m number of requests from bottom layer agents. The degree of a 

node in PDG is deg(v), where ∈v V P DG. The algorithm traverses m BFTs throughout the PDG for certain depth dp. Then complexity 

of m BFTs is O(m(deg(v) dp)). However, according to lemma A.1, deg(v) is independent of the road network size or number of 

paths for a given l. The depth dp is constant irrespective of the road network size. Then the algorithm complexity can be reduced to 

(m); the algorithm complexity is linear in the number of requests from agents within the buffering period. In the worst case, there 

can be requests for each road segment of the road network, tt(V, E), leading to the complexity of ( OE ). 

Distributed version. Algorithm 3 can work with a set of distributed agents (coordinating agents) in the upper layer. In Algorithm 

3, execution is independent of the order of requests coming from the bottom layer agents. Hence, requests can be processed in a 

distributed manner. Every coordinating agent traverses first depth and inform changes to other agents. Once every agent finishes 

their first depth, all coordinating agents begins their second depth, and so on. In such a setting, the complexity of the algorithm is 
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(1). In this work, we implemented the centralized version, however, when applied to larger street networks, the distributed version 

can be implemented.  

 

VI. METHODOLOGY 

A. We compare the proposed algorithm, CLLA, against DLA and two other baseline algorithms using traffic simulations. We 

evaluate the performance of the algorithms for street networks based on real traffic information. The impacts of individual 

parameters of CLLA and DLA are also assessed. The rest of the section points the settings of the experiments. Experimental 

setup  

 Simulation Model. We simulate a traffic system similar to the ones used for reinforcement learning-based traffic 

optimization. In our implementation, vehicles on a road link are modelled based on travel time, which is the sum of two values, 

pure transmit time and waiting time. Pure transmit time is the time taken by a vehicle to travel through the street link at the free-

flow speed. Waiting time is the duration that a vehicle waits in a traffic signal queue. When the direction of a path needs to be 

changed, all existing vehicles in the path need to leave the path and move into the adjacent path in the same direction. Vehicles 

travelling in the opposite direction can utilize the path only after it is cleared of traffic. 

 

 

 

Algorithm 3: Direction-Change Evaluation  
Input: ECinitial, a set of edge-change pairs proposed  

              by the learning agents  

Input: tt(V, E), A road network graph. Each edge in  

the graph has a property, conflict count, which has an integer value that is set to 0 initially.  

Input: l, the lookup distance of PDG  

Input: dp, the depth of search Output: ECexpanded, a  

set of edge-change pairs given by the coordinator  

(1) Build a PDG based on the next l road segments on the path of vehicles. For each PDG vertex, its properties, proposed change 

and consequential changes, are set to empty values initially.  

(2) Create an empty set N . For each edge-change pair in ECinitial, find the corresponding vertex v in PDG and update its proposed 

change property. Add v to N .  

(3) Set the current depth of search to dp.  

(4) If the current depth is above 0, do the following steps. Otherwise, jump to Step 8. 5 Create an empty set N J .  

(5) For each v in N,  

(6) first check whether v has a proposed change. If not, get a proposed change for v using the Direction-Change Creation 

algorithm. Then for each of v’s neighbours at the end of its out-degree arcs, vo, identify the consequential change at the vertex 

that is caused by the proposed change at v. Add the consequential change to the consequential changes of vo if the change 

does not exist on the list. If vo already has a proposed change but the proposed change is different to the consequential change 

at vo, increase the conflict count of the corresponding road network edge by 1. Add vo to N J .  

(7) Decrease the current depth of search by        1. Replace the vertices in N with the vertices in N J . Go back to Step 4.  

(8) For Each PDG vertex v with a proposed change, create a corresponding edge-change pair and add the pair to EAexpanded. Exit 

the algorithm.   

          Street Networks. We run experiments based on the real taxi trip information from New York City. The information 

incorporates the source, the destination and the start time of the taxi trips within the city. We choose a region for simulation since 

the region contain a larger number of sources and destinations than another region. The street network of the simulation areas is 

loaded from OpenStreetMap. For a specific taxi trip, the source and the destination are mapped to the nearest OpenStreetMap nodes. 

The shortest path between the source and destination is calculated. The simulated vehicles follow the shortest paths generated from 

the taxi trip data.  

 Comparison baselines. Different to the proposed solution, CLLA, the existing approaches for optimizing lane-

directions are based on linear programming, which makes them unsuitable for large-scale dynamic optimization due to the high 

computation cost. Due to the lack of comparable solutions, we define three baseline solutions, which are used to compare against 

CLLA. In our experiments, the traffic signals use static timing and phasing, regardless of which solution is used. We conduct 

comparative tests against the following solutions:   

No Lane-direction Allocations (no-LA): This solution does not do any lane-direction change. The traffic is controlled by static 

traffic signals only.  

Demand-based Lane Allocations (DLA): In this solution, the lane-direction changes are computed with Algorithm 1. 

Local Lane-direction Allocations (LLA): This solution uses numerous learning agents to decide lane-direction changes. The 

optimization is performed using the approach depicted in Section V-B. LLA is similar to CLLA but there's no coordination between 

the agents.  

Coordinated Learning-based Lane Allocations (CLLA): This is the two-layer optimization framework depicted in Segment V-

A. 

B. Evaluation Metrics  

We measure the performance of the solutions based on the following metrics.  

Average travel time: The travel time of a vehicle is the duration that the vehicle spends on travelling from its source to its 

destination. We compute the average travel time based on all the vehicles that complete their trips during a simulation. A higher 

average travel time indicates that the traffic is more congested during the simulation. Our proposed solutions aim to reduce the 

average travel time. More information about this metric is shown in Section III.  

Deviation from free-flow travel time: The free-flow travel time of a vehicle is the shortest possible travel time, achieved when 

the vehicle travels at the speed limit of the roads without slowing down at traffic lights during its entire trip. Deviation from Free-

Flow travel Time (DFFT ) is defined as in Equation 7, where ta is the actual time and tf is the free flow travel time. The lowest 
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value of DFFT is 1, which is also the best value that a vehicle can achieve.   

DFFT = ta/tf                         (7) 

 

 C. Parameter Sensitivity Testing  

We evaluate the impacts of the hyper-parameters of CCLA and DLA, which are directly related to lane-direction changes in the 

simulation model. To evaluate the impacts of a particular parameter, we run a set of tests varying the value of the parameter (while 

keeping 

 

Algorithm 4: Direction-Change Creation  
 

Input: v, a PDG vertex that corresponds to an edge in         

             a road network graph. The value of the               

             imbalance property is set to none initially. 

Output: change, the proposed lane-direction change  

 For e, which can be 1(upstream),  

 0(none) and _1(downstream). The  

 default value is 0.  

1 consequentialup: whether the consequential changes    

 at v include one that increases the  

 number of upstrea lanes.  

2 consequentialdown: whether the consequential  

 changes at v include one that increases  

 the number of downstream lanes 

 
Figure 7: The street network of simulation areas in Bhopal 

 

 

the value of other parameters at their default detailed in Table I). The average travel time is detailed for each of the tests. The 

detailed settings of the parameters are shown in Table I. We depict the parameters as follows. Cost of lane-direction change in 

CLLA: The cost of a lane direction change is the time spent on clearing the path that ought to be changed. When the direction of a 

path changes, all the existing vehicles in the path need to leave the path before the path can be utilized by the vehicles from the 

opposite direction. The time spent on clearing the path can vary due to different arbitrary components in the real world. For example, 

the vehicles in the path may not be able to move to an adjacent path instantly in case the adjacent path is highly congested. We vary 

the value of this parameter in a large range, from 40 seconds to 480 seconds. 
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Table I: Settings used in the parameter sensitivity experiments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aggressiveness of lane-direction change in CLLA: This parameter affects the minimum interval between lane-direction changes. 

A lane-direction change can only happen when there’s a traffic imbalance between the two directions at street segment. The 

imbalance is computed based on the model as shown in Equation 4 (Section V-C). Based on an existing study, we set the threshold 

percentage P of the model to 65% and require that the traffic imbalance must last for a minimum time period before a lane-direction 

change can be performed. We define the aggressiveness of lane-direction changes in CLLA as the length of the period. When the 

period is short, the framework can perform lane-direction changes at smaller intervals, and vice-versa. Depth in CLLA: This is the 

parameter dp used in Algorithm 3. When the depth is larger, CLLA can explore more vertices in the PDG, which permits it to 

identify the impact of a lane-direction change on the street sections that are further away from the area of the change. Lookup 

distance in CLLA: This is the parameter l used in Algorithm 3. It can affect the number of vertices and the number of edges in a 

PDG. With a higher lookup distance, the PDG should consider more street sections in the path of vehicles, which can offer assistance 

in recognizing the impact of lane-direction changes at a longer distance but can increase the size of the graph at the same time.  

Update period in CLLA: This parameter controls the frequency at which coordinating agents decide on lane direction changes. 

CLLA is appropriate for highly dynamic traffic environments. Thus the update period ∆t can be set to a low value. We vary the 

value of this parameter between 0.3 minute to 20 minutes with the default value set to 0.3 minute. Update period in DLA: This 

parameter affects the frequency at which DLA optimizes lane-direction changes. DLA decides on lane-direction changes based on 

the traffic request that's collected within the update period ∆t prior to the optimization process. We vary the value of this parameter 

between 2.5 min to 20 min with the default value set to 10.  

 

VII. RESULTS 

We now display experimental results when comparing CLLA against the baseline algorithms in the first portion, and show the 

sensitivity analysis to the parameter values of the algorithms in the second part. 

 

Table II: The percentage of vehicles with a DFFT of higher than 10 

 

Solution Long Island Midtown 

Manhattan 

DLA 10.03% 49.51% 

LLA 7.76% 44.18% 

CLLA 7.75% 46.13% 

 

A. Comparison against the baselines  
This experiment compares the performance of the four solutions, which are depicted in Section VI-A. We run a number of 

simulations in this experiment. For each simulation, we extract taxi trip data for one hour using the real taxi trip data from New 

York. Based on the real data, we create traffic in the simulation. The experiment is done for two regions Figure 8: Performance of 

four solutions with dynamic traffic as shown in Figure 7a and Figure 7b. To simulate a larger variety of traffic scenarios, we also 

up-sample the trip data to produce more vehicles. We define an Up Sampled Factor, which is the number of vehicles that are created 

based on each taxi trip in the taxi data. For LLA and CLLA, the learning rate α is 0.001 and the discount factor used by Q-learning 

is 0.75. The parameter minLoad of DLA is set to 100. For other parameters of the solutions, we use the default values as shown in 

Table I. 

 

Average travel time: Figure 8a and Figure 8b show the average travel time accomplished with the four solutions. CLLA beats the 

other solutions in both simulation regions. We are able to observe that the average travel time of LLA and CLLA is significantly 

lower compared to the average travel time of no-LA, which shows the advantage of dynamic lane-direction changes. In spite of the 

fact that DLA achieves lower travel times than no- LA, it does not perform well compared to CLLA for both regions. CLLA 

performs reliably way better than LLA, because LLA only makes lane-direction changes based on nearby traffic data without 

coordination. We also test the performance of the solutions for a different situation, where the traffic request is static. Vehicles are 

produced at a constant rate during a 30-minute period. Under this setting, the traffic is less dynamic than the previous situation, 

where the traffic request is based on real information. Figure 9a and Figure 9b show the average travel time accomplished with the 

four solutions. Interestingly, DLA performs as great as CLLA. This is often due to the fact that DLA optimizes traffic based on the 

evaluated traffic request. As the traffic request is kept constant, the estimated demand can match the actual request, resulting within 

the great performance of DLA. On the other hand, CLLA is created for highly dynamic traffic situations. When the traffic is static, 

Parameter  Range Default 

value 

Cost of lane-direction 

change in CLLA and DLA 

(seconds) 

40-

480 

120 

Aggressiveness of lane-

direction change in CLLA 

(seconds) 

100-

1000 

300 

Depth in CLLA 1-5 2 

Lookup distance in CLLA 3-5 2 

Update period in CLLA 

(minutes) 

0.3-20 0.3 

Update period in DLA 

(minutes) 

2.0-20 10 
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such as in this situation, the advantage of the solution is limited. The results show that DLA can work well with static traffic but 

does not work well with highly dynamic traffic. CLLA on the other hand works well in both situations: significantly outperforming 

the baselines in dynamic situations, and matching the performance of DLA in static situations.  

Deviation from free-flow travel time (DFFT): Table II shows the percentage of vehicles whose travel time is 10 times or more 

than their free-flow travel time. The results show that LLA and CLLA are able to achieve a lower deviation from the free-flow 

travel time compared to DLA. 

 

 
Figure 9: Performance of four solutions with static traffic 

 

B. Parameter sensitivity testing  

For evaluating the impacts of individual parameters, we run simulations within the region shown in Figure 7a. Each simulation lasts 

for one hour, during which the traffic is created based on the real taxi trip information from the region. Figure 10 shows the impacts 

of four parameters of CLLA. Figure 11 compares the impacts of the update period between DLA and CLLA. Our result shows that 

the travel time increases when the cost of a lane-direction change increases (Figure 10a). The result demonstrates that lane-direction 

changes may not be beneficial in all circumstances. When the cost of lane-direction changes is high, performing the changes can 

cause significant interruption to the traffic and invalidate the advantage of the changes. Figure 10b shows how the aggressiveness 

of lane-direction changes can affect the travel time of vehicles. The result shows that a low level of aggressiveness and a high level 

of aggressiveness have a negative impact on travel times. When the level of aggressiveness is low, the lane-direction changes can 

only happen in large intervals. Thus the changes may not adjust to the dynamic change of traffic. When the level of aggressiveness 

is high, the system changes the direction of paths at a high frequency, which can cause significant interruption to the traffic attributed 

to taking the time to clear the paths during the changes. Our result shows that the best depth for traversing the PDG is 2 (Figure 

10c). When the depth changes from 1 to 2, we observe a decrease in travel time. However, when the depth is higher than 2, we don't 

observe a decrease of travel time. When the depth is higher, the system can recognize the affect of a lane-direction change that are 

further away. However, the affect can become negligible in case the lane-direction change is far away. This can be the reason there's 

no improvement of travel time when the depth is higher than 2. Figure 10d shows that a larger lookup distance can result 
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in a lower average travel time. When the lookup distance increases, CLLA considers more street sections in a vehicle path when 

building the PDG. This helps recognize the significant lane-direction changes on the same path. Decrease in the average travel time 

becomes less significant when the lookup distance is higher than 2. This is because the impact of a path- direction change diminishes 

when the change is further away. When the update period ∆t of DLA is below 5 minutes or past 15 minutes, it is less likely to get a 

great estimation of traffic request, which can lead to a relatively high travel time (Figure 11a). The average travel time is at its 

minimum when ∆t is set to 10 minutes. Different to DLA, the travel time accomplished with CLLA develops gradually with the 

increase of ∆t until ∆t reaches past 15 minutes. The moderately steady performance of CLLA shows that the coordination between 

lane-direction changes can offer assistance in relieving traffic congestion for a certain period of time within the future. In case 

minimizing the average travel time is of priority, one can set ∆t to a very low value, e.g., 5 minutes. If one needs to decrease the 

computation cost of the optimization while accomplishing a reasonably good travel time, the ∆t can be set to a bigger value, e.g., 

15 minutes. 

 

CONCLUSION 

The study has shown that efficient traffic optimization can be accomplished with dynamic lane-direction configurations. The 

proposed hierarchical multi-agent solution, CLLA, can offer assistance in decreasing travel time by combining machine learning 

and the global coordination of lane-direction changes. The proposed solution adjusts to significant changes of traffic requests in a 

timely manner, making it a practical choice for realizing the potential of connected AV in traffic. 
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